Stories about: spina bifida

Could a simple injection fix spina bifida before birth?

Mesenchymal stem cells derived from amniotic fluid (FAUZA LAB / BOSTON CHILDREN’S HOSPITAL)

Ed. note: This is an update of a post that originally appeared in 2014.

The neural tube is supposed to close during the first month of prenatal development, forming the spinal cord and the brain. In children with spina bifida, it doesn’t close completely, leaving the nerves of the spinal cord exposed and subject to damage. The most common and serious form of spina bifida, myelomeningocele, sets a child up for lifelong disability, causing complications such as hydrocephalus, leg paralysis, and loss of bladder and bowel control.

A growing body of research from Boston Children’s Hospital, though still in animal models, suggests that spina bifida could be repaired at least partially early in pregnancy, through intrauterine injections of a baby’s own cells.

Read Full Story | Leave a Comment

Delivered through amniotic fluid, stem cells could treat a range of birth defects

Transamniotic stem cell therapy, or TRASCET, is like amniocentesis is reverse.
Amniotic fluid is routinely withdrawn for prenatal testing. It could also be a delivery route for fetal cell therapy to treat congenital anomalies, with broader applications than once thought.

The amniotic fluid surrounding babies in the womb contains fetal mesenchymal stem cells (MSCs) that can differentiate into many cell types and tissues. More than a decade ago, Dario Fauza, MD, PhD, a surgeon and researcher at Boston Children’s Hospital, proposed using these cells therapeutically. His lab has been exploring these cells’ healing properties ever since.

Replicated in great quantity in the lab and then reinfused into the amniotic fluid in animal models — a reverse amniocentesis if you will — MSCs derived from amniotic fluid have been shown to repair or mitigate congenital defects before birth. In spina bifida, they have induced skin to grow over the exposed spinal cord; in gastroschisis, they have reduced damage to the exposed bowel. Fauza calls this approach Trans-Amniotic Stem Cell Therapy, or TRASCET.

New research findings, reported this month in the Journal of Pediatric Surgery, could expand TRASCET’s therapeutic potential.

Read Full Story | Leave a Comment

Nerve-growth agent could treat incontinence caused by spinal cord injury

Image of Rosalyn Adam, a urology researcher hoping to develop new treatments for incontinence, working in the laboratory
Rosalyn Adam is the director of urology research at Boston Children’s Hospital.

When the nerves between the brain and the spinal cord aren’t working properly, bladder control can suffer, resulting in a condition called neurogenic bladder. It’s a common complication of spinal cord injury; in fact, most people with spina bifida or spinal cord injury develop neurogenic bladders. Spontaneous activity of the smooth muscle in the wall of the bladder — called the detrusor muscle — commonly causes urine leakage and incontinence in people with neurogenic bladders.

“For children and adults, incontinence can be one of the most socially and psychologically detrimental complications of spinal cord injury,” says Rosalyn Adam, PhD, who is director of urology research at Boston Children’s Hospital. “The ultimate goal of our research is to return bladder control to the millions of Americans with neurogenic bladders.”

Now, Adam and a team of researchers think that they may have found a practical way to treat neurogenic detrusor overactivity by delivering medication directly into the bladder through self-catheterization, a practice that many people with neurogenic bladders already need to perform regularly.

Read Full Story | Leave a Comment

Arsenic and neural tube defects: Lessons from Bangladesh?

arsenic neural tube defects

Spina bifida and other neural tube defects have become fairly rare in the United States, thanks in part to folic acid added to foods and campaigns to get childbearing women to take folic acid. But in Bangladesh, spina bifida is a common occurrence on maternity wards; in fact, it is considered to be epidemic.

“No surveillance is done, so it’s not clear how many cases there are,” says Maitreyi Mazumdar, MD, MPH, a neurologist at Boston Children’s Hospital who conducts environmental health research. “Children may die in delivery, or they may die before seeing a surgeon.”

Although folic acid supplementation isn’t widespread in Bangladesh, Mazumdar thinks there is another factor in play: the country’s ongoing epidemic of arsenic poisoning.

Read Full Story | Leave a Comment

Spina bifida and hydrocephalus: Two interlinked global challenges, two plans of attack

(Photo: Crossroads Foundation https://creativecommons.org/licenses/by/2.0/legalcode)
(Photo: Crossroads Foundation)

The United Nations global Millennium Development Goals (MDGs) for 2015 aim to cut mortality among children younger than 5 by two-thirds. As 2015 approaches, there’s a sense of hope: By 2012, the 1990 base annual figure of 12 million was nearly halved, in part through curbing infectious diseases.

However, two under-recognized, highly preventable chronic conditions—spina bifida and hydrocephalus—have not declined in low- and middle-income countries. Each year, there are an estimated 200,000 new cases of infant hydrocephalus in sub-Saharan Africa alone, and 100,000 neural tube defects in India alone. As other causes of death and disability recede, data suggest that spina bifida and hydrocephalus are gaining a larger share of mortality in young children.

A multi-institution conference at Boston Children’s Hospital on April 11 sounded a global call to action, convening a mix of surgeons, pediatric neurologists, international patient advocacy groups, food fortification proponents, health economists, obstetricians, neuroscientists and others. Many innovative approaches are being explored, including two that caught Vector’s eye.

Read Full Story | Leave a Comment