Stories about: stem cell research

3D organoids and RNA sequencing reveal the crosstalk driving lung cell formation

lung disease
A healthy lung must maintain two key cell populations: airway cells (left), and alveolar epithelial cells (right). (Joo-Hyeon Lee)

To stay healthy, our lungs have to maintain two key populations of cells: the alveolar epithelial cells, which make up the little sacs where gas exchange takes place, and bronchiolar epithelial cells (also known as airway cells) that are lined with smooth muscle.

“We asked, how does a stem cell know whether it wants to make an airway or an alveolar cell?” says Carla Kim, PhD, of the Stem Cell Research Program at Boston Children’s Hospital.

Figuring this out could help in developing new treatments for such lung disorders as asthma and emphysema, manipulating the natural system for treatment purposes.

Read Full Story | Leave a Comment

Stem cell workaround cracks open new leads in Diamond Blackfan anemia

Diamond Blackfan anemia iPS cells hematopoietic progenitor cells
Though not bona-fide stem cells, hematopoietic progenitor cells produce red blood cells when exposed to certain chemicals. Could some of these compounds lead to new drugs for Diamond Blackfan anemia?

Diamond Blackfan anemia (DBA) has long been a disease waiting for a cure. First described in 1938 by Louis K. Diamond, MD, of Boston Children’s Hospital and his mentor, Kenneth Blackfan, MD, the rare, severe blood disorder prevents the bone marrow from making enough red blood cells. It’s been linked to mutations affecting a variety of proteins in ribosomes, the cellular organelles that themselves build proteins. The first mutation was reported in 1999.

But scientists have been unable to connect the dots and turn that knowledge into new treatments for DBA. Steroids are still the mainstay of care, and they help only about half of patients. Some people eventually stop responding, and many are forced onto lifelong blood transfusions.

Researchers have tried for years to isolate and study patients’ blood stem cells, hoping to recapture the disease process and gather new therapeutic leads. Some blood stem cells have been isolated, but they’re very rare and can’t be replicated in enough numbers to be useful for research.

Induced pluripotent stem (iPS) cells, first created in 2006 from donor skin cells, seemed to raise new hope. They can theoretically generate virtually any specialized cell, allowing scientists model a patient’s disease in a dish and test potential drugs.

There’s been just one hitch. “People quickly ran into problems with blood,” says hematology researcher Sergei Doulatov, PhD. “iPS cells have been hard to instruct when it comes to making blood cells.”

Read Full Story | Leave a Comment

Rainbow-hued blood stem cells shed new light on cancer, blood disorders

color-coded blood stem cells
These red blood cells bear color tags made from random combinations of red, green and blue fluorescent proteins. Same-color cells originate from the same blood stem cell (Nature Cell Biology 2016, Henninger et al).

A new color-coding tool is enabling scientists to better track live blood stem cells over time, a key part of understanding how blood disorders and cancers like leukemia arise, report researchers in Boston Children’s Hospital’s Stem Cell Research Program.

In Nature Cell Biology today, they describe the use of their tool in zebrafish to track blood stem cells the fish are born with, the clones (copies) these cells make of themselves and the types of specialized blood cells they give rise to (red cells, white cells and platelets). Leonard Zon, MD, director of the Stem Cell Research Program and a senior author on the paper, believes the tool has many implications for hematology and cancer medicine since zebrafish are surprisingly similar to humans genetically.

Read Full Story | Leave a Comment

Where science connects with care: A Q&A with Leonard Zon

Leonard Zon in the lab

Leonard Zon, MD, is founder and director of the Stem Cell Research Program at Boston Children’s Hospital and an investigator with the Howard Hughes Medical Institute and the Harvard Stem Cell Institute. His laboratory research focuses on stem cell therapies for patients with cancer and blood disorders, using a high-throughput, automated system for screening potential drugs in zebrafish. Zon was cofounder of Scholar Rock and Fate Therapeutics and founder and past president of the International Society for Stem Cell Research.

Your hospital just received a #1 ranking from U.S. News & World Report. What does this mean relative to your role there?

I’ve been at Boston Children’s Hospital for 25 years, and it’s really satisfying to be at the premier institution for clinical care. And we’re very lucky to have one of the premier stem cell programs in the world. I have a strong sense that my impact on society is as a physician-scientist, bringing basic discoveries to the clinic. We’re able to have a huge impact on finding new diagnoses and new therapies for our children.

What inspires you to do your job every day?

As a hematologist I take care of patients who have devastating diseases – a variety of blood diseases and cancer. When I see these children, I’m always wondering, could there be ways to treating them that haven’t been thought of before? Successfully treating a child gives them an entire lifetime of health.

Read Full Story | Leave a Comment

Forty years waiting for a cure: ALD gene therapy trial shows early promise

Ethan, who was diagnosed with ALD when he was 9, with his sister Emily
Ethan and me, June 1977

A small piece of notepaper, folded twice, sits tucked in a slot of the secretary desk in the living room. Every so often, I pull it out, read it, then reread.

Addressed to my mom, the paper has a question and two boxes, one “yes” and one “no,” written with the careful precision of a 7-year-old.

I am sad of Ethan. You too?

A check marks the box.

Yes. Yes, I am sad too.

Learning about adrenoleukodystrophy

My brother Ethan Williams was 9 years old in the fall of 1976, when he began to lose his sight. For my parents, that winter brought an endless round of doctor visits, therapists and lab tests.

Read Full Story | 2 Comments | Leave a Comment

Tissue models of heart disease provide testing ground for treatments

Pink heart circuit board EKG-shutterstock_322058528Scientists are now able to create cardiac heart muscle cells from patients with heart disease. But cells alone aren’t enough to fully study cardiac disorders — especially rhythm disorders that require the activity of multiple cells assembled into tissues.

William Pu, MD, of Boston Children’s Hospital’s Heart Center and his team are honing the art of modeling heart disease in a dish. With an accurate lab model, they hope to test drug therapies without posing a risk to living patients (or even live animals).

Together with researchers at Harvard’s Wyss Institute, Pu’s lab recently modeled a rare rhythm disorder called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is a dangerous disease in which the heart’s rhythm can suddenly jolt abnormally without warning. Undetectable on a resting electrocardiogram (EKG), CPVT does not affect patients at rest. However, exercise or emotional upset trigger high levels of adrenaline, which can lead to life-threatening arrhythmia, cardiac arrest and possibly sudden death.

Read Full Story | Leave a Comment

Meet the researcher behind “heart on a chip”

Pu and wife and waterfallFrom a series on researchers and innovators at Boston Children’s Hospital.

With all of the recent buzz about precision medicine, it’s no wonder that William Pu, MD is gaining recognition for his innovative application of stem cell science and gene therapy to study Barth syndrome, a type of heart disease that severely weakens heart muscle. Pu’s research was recently recognized by the American Heart Association as one of the top ten cardiovascular disease research advances of 2014.

Can you describe your work and its potential impact on patient care?

We modeled a form of heart-muscle disease in a dish. To do this, we converted skin cells from patients with a genetic heart muscle disease into stem cells, which we then instructed to turned into cardiomyocytes (heart-muscle cells) that have the genetic defect. We then worked closely with bioengineers to fashion the cells into contracting tissues, a “heart-on-a-chip.”

How was the idea that sparked this innovation born?

This innovation combined the fantastic, ground-breaking advances from many other scientists. It is always best to stand on the shoulders of giants.

Read Full Story | Leave a Comment

Seeding medical innovation: The Technology Development Fund

Monique Yoakim Turk Technology Development FundMonique Yoakim-Turk, PhD, is a partner of the Technology Development Fund and associate director of the Technology and Innovation Development Office at Boston Children’s Hospital

Since 2009, Boston Children’s Hospital has committed $6.2 million to support 58 hospital innovations ranging from therapeutics, diagnostics, medical devices and vaccines to regenerative medicine and healthcare IT projects. What a difference six years makes.

The Technology Development Fund (TDF) was proposed to Boston Children’s senior leadership in 2008 after months of research. As a catalyst fund, the TDF is designed to transform seed-stage academic technologies at the hospital into independently validated, later-stage, high-impact opportunities sought by licensees and investors. In addition to funds, investigators get access to mentors, product development experts and technical support through a network of contract research organizations and development partners. TDF also provides assistance with strategic planning, intellectual property protection, regulatory requirements and business models.

Seeking some “metrics of success” beyond licensing numbers and royalties (which can come a decade or so after a license), I asked recipients of past TDF awards to report back any successes that owed at least in part to data generated with TDF funds. While we expected some of the results, we would have never anticipated such a large impact.

Read Full Story | Leave a Comment

Stem cell medicine gets a “roadmap” and a quality assurance tool

cell fate map Boston subway
Credit: Samantha Morris, PhD, Boston Children’s Hospital

If you’ve lost your way on the Boston subway, you need only consult a map to find the best route to your destination. Now stem cell engineers have a similar map to guide the making of cells and tissues for disease modeling, drug testing and regenerative medicine. It’s a computer algorithm known as CellNet.

As in this map on the cover of Cell, a cell has many possible destinations or “fates,” and can arrive at them through three main stem cell engineering methods:

reprogramming (dialing a specialized cell, such as a skin cell, back to a stem-like state with full tissue-making potential)
differentiation (pushing a stem cell to become a particular cell type, such as a blood cell)
direct conversion (changing one kind of specialized cell to another kind)

Freely available on the Internet, CellNet provides clues to which methods of cellular engineering are most effective—and acts as a much-needed quality control tool.

Read Full Story | Leave a Comment

The hope and promise of stem cells: A TED tutorial

At TEDx Longwood this spring, Leonard Zon, MD, founder and director of the Stem Cell Program at Boston Children’s Hospital, took the stage. In his enthusiastic yet humble style, he took the audience on a journey that included time-lapse video of zebrafish embryos developing, a riff by Jay Leno and a comparison of stem cell “engraftment” to a college kid coming home after finals: “You sleep for three days, and on day 4, you wake up and you’re in your own bed.” Three takeaways:

1)   Stem cells made from our own skin cells can help find new therapeutics. With the right handling, they themselves can be therapeutics, producing healthy muscle, insulin-secreting cells, pretty much anything we need. (So far, this has just been done in mice.)

2)   Zebrafish, especially when they’re see-through, can teach us how stem cells work and can be used for mass screening of potential drugs. The Zon Lab boasts 300,000 of these aquarium fish, and can mount robust “clinical trials” with 100 fish per group.

3)   Drugs discovered via zebrafish are in human clinical trials right now: A drug to enhance cord blood transplants for leukemia or lymphoma, and an anti-melanoma drug originally used to treat arthritis.

Zon, who co-founded the biopharm company Fate Therapeutics, will be part of a judging panel of clinicians and venture capitalists for the Innovation Tank at Boston Children’s Global Pediatric Innovation Summit + Awards (Oct. 30-31). Don’t miss it!

Read Full Story | Leave a Comment