Stories about: stem cells

Delivered through amniotic fluid, stem cells could treat a range of birth defects

Transamniotic stem cell therapy, or TRASCET, is like amniocentesis is reverse.
Amniotic fluid is routinely withdrawn for prenatal testing. It could also be a delivery route for fetal cell therapy to treat congenital anomalies, with broader applications than once thought.

The amniotic fluid surrounding babies in the womb contains fetal mesenchymal stem cells (MSCs) that can differentiate into many cell types and tissues. More than a decade ago, Dario Fauza, MD, PhD, a surgeon and researcher at Boston Children’s Hospital, proposed using these cells therapeutically. His lab has been exploring these cells’ healing properties ever since.

Replicated in great quantity in the lab and then reinfused into the amniotic fluid in animal models — a reverse amniocentesis if you will — MSCs derived from amniotic fluid have been shown to repair or mitigate congenital defects before birth. In spina bifida, they have induced skin to grow over the exposed spinal cord; in gastroschisis, they have reduced damage to the exposed bowel. Fauza calls this approach Trans-Amniotic Stem Cell Therapy, or TRASCET.

New research findings, reported this month in the Journal of Pediatric Surgery, could expand TRASCET’s therapeutic potential.

Read Full Story | Leave a Comment

Potential cure for diabetes may be in the stomach

diabetes stomach beta cells
The yellow-green cells in this “mini-stomach” are capable of making insulin. The mini-organ was made from biopsied cells from mouse stomachs, with reprogramming factors added.

If only there were a cure. David Breault, MD, PhD, associate chief of the Division of Endocrinology at Boston Children’s Hospital, was seeing patient after patient with Type I diabetes. Children facing lifetimes of insulin injections, special diets and the threat of long-term complications including blindness, heart disease and kidney failure.

Breault knew that patients with type I diabetes mysteriously destroy their own insulin-producing beta cells. He had read reports of researchers transplanting beta cells to supplement insulin. These transplants, even when successful, required powerful immunosuppressant medications to prevent patients’ immune systems from attacking the donor cells.

But Breault was also aware that investigators had, for a decade, been looking to stem cells as the source of a constantly renewing supply of beta cells. Advancing that promise, he has now found a way to convert patients’ own cells — from the stomach and intestine — into beta cells that produce insulin.

Read Full Story | Leave a Comment

Stem cells and birth defects: Could gastroschisis be treated in utero?

gastroschisis birth defects
Although Gianna was treated surgically, Dario Fauza, MD, hopes to someday use stem cells from the amniotic fluid, multiplied and returned to the womb, to naturally heal gastroschisis and other birth defects. (Courtesy Danielle DeCarlo)

Except when spreading awareness about her condition, 6-year-old Gianna DeCarlo prefers not to wear two-piece bathing suits because of the long vertical scar on her stomach. “Even though nobody’s said anything, she feels like she’ll be made fun of,” says her mother, Danielle. “I do what I can to make her love her body.”

Gianna doesn’t remember her three surgeries or the nasogastric tube she needed as an infant, before she was able to eat normally. She was born with gastroschisis, a striking birth defect in which the abdominal wall doesn’t seal fully during fetal development. As a result, her intestines developed outside her body. She was fed through an IV for several weeks, and was finally stitched fully shut at age 2.

Read Full Story | Leave a Comment

An inner ear in a dish

lab-grown inner ear organs
Images courtesy Eri Hashino

Could regenerative techniques restore hearing or balance by replacing lost sensory cells in the inner ear? Lab-created inner-ear organs, described today in Nature Communications, could provide helpful three-dimensional models for testing potential therapies.

The lab-built sac-like structure above, about 1 millimeter in size, contains fully-formed balance organs resembling the utricle and saccule, which sense head orientation and movement and send impulses to the brain. The tiny organs were built from mouse embryonic stem cells in a 3-D tissue culture in work led by Jeffrey Holt, PhD, of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital and Eri Hashino, PhD, of the University of Indiana.

Read Full Story | Leave a Comment

News notes: Headlines in science & innovation

An occasional roundup of news items Vector finds interesting.

Blood-brain barrier on chip

vector news - blood brain barrier chip
(Wyss Institute at Harvard University)

The blood-brain barrier protects the brain against potentially damaging molecules, but its gate-keeping can also prevent helpful drugs from getting into the central nervous system. Reporting in PLoS One, a team at the Wyss Institute for Biologically Inspired Engineering describes a 3-D blood-brain barrier on a chip — a hollow blood vessel lined with living human endothelial cells and surrounded by a collagen matrix bearing human pericytes and astrocytes.

Read Full Story | Leave a Comment

The cell that caused melanoma: Cancer’s surprise origins, caught in action

It’s long been a mystery why some of our cells can have mutations associated with cancer, yet are not truly cancerous. Now researchers have, for the first time, watched a cancer spread from a single cell in a live animal, and found a critical step that turns a merely cancer-prone cell into a malignant one.

Their work, published today in Science, offers up a new set of therapeutic targets and could even help revive a theory first floated in the 1950s known as “field cancerization.”

“We found that the beginning of cancer occurs after activation of an oncogene or loss of a tumor suppressor, and involves a change that takes a single cell back to a stem cell state,” says Charles Kaufman, MD, PhD, a postdoctoral fellow in the Zon Laboratory at Boston Children’s Hospital and the paper’s first author.

Read Full Story | 1 Comment | Leave a Comment

Rescuing intestinal stem cells from attack in diabetes

diabetic enteropathy and colonic stem cells
Blood levels of the hormone IGFBP3 (enterostaminine), shown here in green, are markedly elevated in people with longstanding type 1 diabetes and launch a lethal attack on intestinal stem cells. Adding a protein that soaks up the excess hormone restores normal stem cell function and could help prevent or treat diabetic enteropathy. (All images by Riseon)

Up to 80 percent of people with long-standing type 1 diabetes develop gastrointestinal symptoms—abdominal pain, bloating, nausea, vomiting, diarrhea, constipation and fecal incontinence—that severely diminish quality of life. Recent evidence suggests that this condition, known as diabetic enteropathy, results from damage to the intestinal lining, but the details beyond that have been unclear.

A study in this week’s Cell Stem Cell, led by Paolo Fiorina, MD, PhD, now provides some answers. It demonstrates how diabetes can lead to destruction of the stem cells that maintain the intestinal lining, and identifies a potential drug that could protect these stem cells and prevent or treat diabetic enteropathy.

Read Full Story | Leave a Comment

Stress-induced stem cells debunked: The final word on STAP

In early 2014, controversy erupted when two papers in Nature indicated that exposing ordinary cells to stress—an acid bath or mechanical stress—could quickly and efficiently turn them into pluripotent stem cells, capable of developing into virtually all the tissues in the body.

The technique, called “stimulus-triggered acquisition of pluripotency,” or STAP, was lauded for its simplicity compared to other methods like nuclear transfer into egg cells or cellular reprogramming with a set of transcription factors.

Not so fast.

Six months later, the papers were retracted. And this week in Nature, a team led by George Q. Daley, MD, PhD, director of the Stem Cell Transplantation Program at Boston Children’s Hospital, and Peter Park, PhD, head of the Computational Genomics Group at Harvard Medical School (HMS) details what went wrong. In a companion paper, the Daley Lab provides a roadmap for verifying a cell’s pluripotent status.

Read the full story on the HMS website.

Read Full Story | Leave a Comment

Gene therapy to germline editing: Promises, challenges, ethics

A report this April rocked the scientific world: scientists in China reported editing the genomes of human embryos using CRISPR/Cas9 technology. It was a limited success: of 86 embryos injected with CRISPR/Cas9, only 71 survived and only 4 had their target gene successfully edited. The edits didn’t take in every cell, creating a mosaic pattern, and worse, unwanted DNA mutations were introduced.

“Their study should give pause to any practitioner who thinks the technology is ready for testing to eradicate disease genes during [in vitro fertilization],” George Q. Daley, MD, PhD, director of the Stem Cell Transplantation Program at Boston Children’s Hospital, told The New York Times. “This is an unsafe procedure and should not be practiced at this time, and perhaps never.”

As Daley detailed last week in his excellent presentation at Harvard Medical School’s Talks@12 series, the report reignited an ethical debate around tampering with life that’s hummed around genetic and stem cell research for decades. What the Chinese report adds is the theoretical capability of not just changing your genetic makeup, but changing the DNA you pass on to your children.

Read Full Story | Leave a Comment

Souped-up fish facility boosts drug discovery and testing

closeup of zebrafish-20150526_ZebraFishCeremony-60The care and feeding of more than 250,000 zebrafish just got better, thanks to a $4 million grant from the Massachusetts Life Sciences Center to upgrade Boston Children’s Hospital’s Karp Aquatics Facility. Aside from the fish, patients with cancer, blood diseases and more stand to benefit.

From a new crop of Boston-Children’s-patented spawning tanks to a robotic feeding system, the upgrade will help raise the large numbers of the striped tropical fish needed to rapidly identify and screen potential new therapeutics. It’s all part of the Children’s Center for Cell Therapy, established in 2013. We put on shoe covers and took a look behind the scenes. (Photos: Katherine Cohen)

Read Full Story | Leave a Comment