Stories about: T cells

More surprises about blood development — and a possible lead for making lymphocytes

blood development chart
Blood development in the embryo begins with cells that make myeloid and erythroid cells – but not lymphoid cells. Why? A partial answer is in today’s Nature.

Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we’re born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists have long focused on capturing HSCs’ emergence in the embryo, hoping to recreate the process in the lab to provide a source of therapeutic blood cells.

But in the embryo, oddly enough, blood development unfolds differently. The first blood cells to show up are already partly differentiated. These so-called “committed progenitors” give rise only to erythroid and myeloid cells — not lymphoid cells like the immune system’s B and T lymphocytes.

Researchers in the lab of George Q. Daley, MD, PhD, part of Boston Children’s Hospital’s Stem Cell Research program, wanted to know why. Does nature deliberately suppress blood cell multipotency in early embryonic development? And could this offer clues about how to reinstate multipotency and more readily generate different blood cell types?

Read Full Story | Leave a Comment

Protecting immune cells from exhaustion

T cell exhaustion
Boosting a naturally occurring protein could prevent T-cells from burning out

Run the first half of a marathon as fast as you can and you’ll likely never finish the race. Run an engine at top speed for too long and you’ll burn it out.

The same principle seems to apply to our T cells, which power the immune system’s battle with chronic infections like HIV and hepatitis B, as well as cancer. Too often, they succumb to “T cell exhaustion” and lose their capacity to attack infected or malignant cells. But could T cells learn to pace themselves and run the full marathon?

That’s the thinking behind a research study published last week by The Journal of Experimental Medicine. “Our research provides a clear explanation for why T cells lose their fighting ability,” says Florian Winau, MD, “and describes the countervailing process that protects their effectiveness.”

Read Full Story | Leave a Comment