Stories about: Takao Hensch

Opening up brain critical periods: Lynx1 and where sensory information meets context

auditory critical periods involve neurons in levels 1 and 4 of the auditory cortex
Interneurons (white) from layer 1 (L1) of the auditory cortex descend to contact parvalbumin cells (red) in layer 4. (Images courtesy Hensch Lab).

Babies’ brains are like sponges — highly tuned to incoming sensory information and readily rewiring their circuits. But when so-called critical periods close, our brains lose much of this plasticity. Classic experiments reveal this in the visual system: when kittens and mice had one eye covered shortly after birth, that eye was blind for life, even after the covering was removed. The brain never learned to interpret the visual inputs.

In 2010, a study led by Takao Hensch, PhD, of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, showed that levels of a protein called Lynx1 rise just as the critical period for visual acuity closes. When the researchers deleted the Lynx1 gene in mice, the critical period reopened and mice recovered vision in the blind eye.

A new study this week in Nature Neuroscience extends Lynx1’s role to the auditory system.

“If we remove Lynx1, the auditory critical period stays open longer,” says Hensch.

Equally important, the study pinpoints the location in the brain where sensory inputs combine with another essential ingredient: what neuroscientists call context.

Read Full Story | Leave a Comment