Stories about: targeted therapy

A bold strategy to enhance CAR T-cell therapies, capable of targeting DIPG and other tough-to-treat cancers

CAR T-cell therapy uses a patient's own genetically modified T cells to attack cancer, as pictured here, where T cells surround a cancer cell.
T cells surround a cancer cell. Credit: National Institutes of Health

A Boston-based team of researchers, made up of scientists and pediatric oncologists, believe a better CAR T-cell therapy is on the horizon.

They say it could treat a range of cancers — including the notorious, universally-fatal childhood brain cancer known as diffuse intrinsic pontine glioma or DIPG — by targeting tumor cells in an exclusive manner that reduces life-threatening side effects (such as off-target toxicities and cytokine release syndrome). The team, led by Carl Novina, MD, PhD, and Mark Kieran, MD, PhD, of the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, calls their approach “small molecule CAR T-cell therapy.”

Their plan is to optimize the ability for CAR T-cell therapies, which use a patient’s genetically modified T cells to combat cancer, to more specifically kill tumor cells without setting off an immune response “storm” known as cytokine release syndrome. The key ingredient is a unique small molecule that greatly enhances the specificity of the tumor targeting component of the therapy.

Read Full Story | Leave a Comment

Packaging RNAs for speedy, accurate delivery — for cancer and more

Small interfering RNAs, or siRNAs, could be great targeted treatment tools for breast and other cancers. The problem is making sure they get packaged and delivered to where they need to go. (pscf11/Flickr)

Breast cancers whose cells carry the HER2 protein are pretty tough customers. They only account for about 20 percent of all breast cancers, but they are some of the most aggressive. While targeted drugs like trastuzumab (Herceptin) and lapatinib (Tykerb) have made these tumors easier to treat, those that resist these drugs, relapse or don’t have HER2 on their cells’ surfaces can still stymie oncologists.

A molecular phenomenon called RNA interference (RNAi)—in which small pieces of RNA silence the expression of individual genes—could provide an alternative solution for breast and other cancers.

Though it was first discovered in plants, researchers have known for about a decade that small interfering RNAs (siRNAs) are active in mammals like us, and are already working on ways to harness them for shutting down genes promoting cancer and other diseases.

The problem with siRNAs for treatment, however, is making sure they get exactly where they need to go. That’s a problem that Judy Lieberman, MD, PhD, has taken a big step toward solving.

Read Full Story | 1 Comment | Leave a Comment