Stories about: therapeutic development

A bold strategy to enhance CAR T-cell therapies, capable of targeting DIPG and other tough-to-treat cancers

CAR T-cell therapy uses a patient's own genetically modified T cells to attack cancer, as pictured here, where T cells surround a cancer cell.
T cells surround a cancer cell. Credit: National Institutes of Health

A Boston-based team of researchers, made up of scientists and pediatric oncologists, believe a better CAR T-cell therapy is on the horizon.

They say it could treat a range of cancers — including the notorious, universally-fatal childhood brain cancer known as diffuse intrinsic pontine glioma or DIPG — by targeting tumor cells in an exclusive manner that reduces life-threatening side effects (such as off-target toxicities and cytokine release syndrome). The team, led by Carl Novina, MD, PhD, and Mark Kieran, MD, PhD, of the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, calls their approach “small molecule CAR T-cell therapy.”

Their plan is to optimize the ability for CAR T-cell therapies, which use a patient’s genetically modified T cells to combat cancer, to more specifically kill tumor cells without setting off an immune response “storm” known as cytokine release syndrome. The key ingredient is a unique small molecule that greatly enhances the specificity of the tumor targeting component of the therapy.

Read Full Story | Leave a Comment

News Note: Modeling sepsis better to find a cure faster

In this SEM image, E. coli (green) bacteria, a common instigator of sepsis, is captured by bioengineered magnetic beads.
New assessment criteria for monitoring sepsis in pig models could help clinical researchers more accurately evaluate potential sepsis treatments in preclinical experiments. In this SEM image, E. coli (green) bacteria, a common instigator of sepsis, is captured by bioengineered magnetic beads. Credit: Wyss Institute at Harvard University

Sepsis, or blood poisoning, occurs when the body’s response to infection damages its own tissues, leading to organ failure. It is the most common cause of death in people who have been hospitalized, yet no new therapies have been developed in the last 30 years. Many treatments that have prevented death in animal experiments have failed in clinical trials, indicating that a more clinically-relevant sepsis model is needed for therapeutic development.

To bridge this gap, a team of scientists from the Wyss Institute at Harvard University and Boston Children’s Hospital think a better experimental model of sepsis in pigs could help weed out the therapies most likely to succeed in humans. Their method, a scoring criteria to evaluate sepsis in pigs that closely mirrors standard human clinical assessment, is reported in Advances in Critical Care Medicine.

Read Full Story | Leave a Comment

Advancing clinical trials for Niemann-Pick type C: Sweet news for cyclodextrin

Febreze-Human Zoom-Creative CommonsOlaf Bodamer, MD, PhD, is associate chief of the Division of Genetics and Genomics at Boston Children’s Hospital and is launching a multidisciplinary clinic this spring for lysosomal storage diseases—including Niemann-Pick type C, sometimes referred to as “childhood Alzheimer’s.”

Niemann-Pick disease type C (NP-C) has come a long way since its first description as an entity in the 1960s. Part of a group of rare metabolic disorders known as lysosomal storage diseases, NP-C leaves children unable to break down cholesterol and other lipid molecules. These molecules accumulate in the liver, spleen and brain, causing progressive neurologic deterioration.

I still vividly remember when I diagnosed my first patient with this devastating disease, a 3-year-old boy who had global developmental delay, restricted eye movement, loss of motor coordination and loss of speech. I spent hours with the family, explaining what was known about NP-C. When faced with the question about treatability and outcome, I could barely find the right words, but had to acknowledge that the outcome was inevitably fatal and that there was no specific treatment other than supportive measures to treat his symptoms.

Read Full Story | Leave a Comment

15 health care predictions for 2015

healthcare predictions
2014 continued to see massive evolution in health care—from digital health innovations to the maturation of technologies in genomics, genome editing and regenerative medicine to the configuration of the health care system itself. We asked leaders from the clinical, research and business corners of Boston Children’s Hospital to weigh in with their forecasts for 2015. Click “Full story” for them all, or jump to:
The consumer movement in health care
Evolving care models
Genomics in medicine
Stem cell therapeutics
Therapeutic development
New technology
Biomedical research

Read Full Story | Leave a Comment

BioPharm 2011: Stakeholders’ changing roles in therapeutic development

Can we get this family to function? (Photo: eyeliam/Flickr)

My summary of BioPharm America 2011: We are a family and we just need to work together. As stakeholders in developing new treatments, we each have our own shortfalls and strengths, we’re under pressure, and our roles are changing over time.

Here’s the panelists’ take on the different players.

Big pharma: The old business model is broken. Pharma is cutting R&D and other programs that aren’t generating enough return. Companies now approach markets differently, said Angus Russell, CEO of Shire. A new product doesn’t have to be a first-line therapy to justify market entry; there’s a business case for selling a targeted drug to patients who don’t respond to generics and have no other solution.

Read Full Story | Leave a Comment