Stories about: Timothy Hla

A new inlet to treating neurological disease

Image of brains showing red tracer dye, indicating passage of molecules through the blood-brain barrier
These brain images tell a story about the blood-brain barrier: At left, the brain before injection of red tracer dye. At center, an injection of tracer dye shows only a small amount of molecules can infiltrate the blood brain barrier. At right, a new approach for crossing the blood-brain barrier increases the tracer’s penetration into brain tissue.

The blood-brain barrier was designed by nature to protect the brain and central nervous system (CNS) from toxins and other would-be invaders in the body’s circulating blood. Made up of tightly-packed cells, the barrier allows nutrients to pass into the CNS and waste products from the brain to be flushed out, while blocking entry of harmful substances.

A dysfunctional blood-brain barrier can contribute to CNS diseases including Alzheimer’s and multiple sclerosis (MS). But, ironically, the same blood-brain barrier can keep out drugs intended to treat CNS disease. Scientists have long been seeking ways to overcome this obstacle.

Now, Timothy Hla, PhD, and members of his laboratory in the Boston Children’s Hospital Vascular Biology Program have found a way to selectively control openings in the blood brain barrier to allow passage of small drug molecules.

Read Full Story | Leave a Comment