Stories about: Wiskott-Aldrich disease

Mimicking milieus to produce platelets…for science and transfusion

Researchers and doctors dream of being able to artificially produce platelets (in the blood bag above) at clinically useful scales. A device that mimics the environments in which platelets mature could help them get there. (Toytoy/Wikimedia Commons)

The platelet – a crucial cog in our blood’s clotting machinery – is in high demand. Trauma, chemotherapy, and surgery patients often need platelet transfusions to keep their blood working properly. So too do people with genetic disorders like Wiskott-Aldrich syndrome that prevent them from producing enough platelets on their own and cause thrombocytopenia.

However, platelets are in short supply compared to other blood products, in part due to their short shelf life.

“Platelets only last in the body for about 10 days at a time,” explains Jonathan Thon, a fellow in the laboratory of Joe Italiano, a member of Children’s Vascular Biology Program. “In a blood bank, red blood cells can be stored in a refrigerator for 42 days, and plasma can be frozen for years. But platelets need to be stored at room temperature, and only for a short time for fear of bacterial contamination.” Which means that few platelets are available for those who need them – a situation that screams for a means of artificial platelet production.

Read Full Story | Leave a Comment

Moving gene therapy into high gear

A healthy copy of the affected gene is introduced into the patient's stem cells by means of a vector, a genetically altered virus that does not cause ongoing infection. The stem cells, corrected for the defect, are infused back into the patient. (Click to enlarge.)

Gene therapy, still experimental but beginning to enter the clinic, attempts to utilize advanced molecular methods to treat and even reverse genetic diseases. The field started in earnest about 25 years ago and has had many setbacks along the way to its recent earliest successes.

International collaboration has been critical. Children’s Hospital Boston is one of the founding members of the Transatlantic Gene Therapy Consortium (TAGTC), a new collaboration that seeks to facilitate a more rapid advancement of this technology for treating human diseases. It was initiated shortly after the first trials of gene therapy for X-linked Severe Combined Immunodeficiency (X-SCID) (in both Paris and London) reported leukemia as a serious side effect. The TAGTC was formed to address this setback, developing safer gene therapy reagents, sharing the costs of their development, and then implementing new gene therapy trials for rare diseases across multiple international sites.

Read Full Story | Leave a Comment