Author: Nancy Fliesler

The genetics of early-onset psychosis: Could it aid understanding of schizophrenia?

psychosis schizophrenia
(Thomas Zapata/Wikimedia Commons)

At age six, Matthew (not his real name) began hearing voices coming out of the walls and the school intercom, telling him to hurt himself and others. He saw ghosts, aliens in trees and color footprints. Joseph Gonzalez-Heydrich, MD, a psychiatrist at Boston Children’s Hospital, put Matthew, at age 9, on antipsychotic medications, and the hallucinations stopped.

It’s rare for children so young to have psychotic symptoms. Intrigued, Gonzalez-Heydrich referred Matthew for genetic testing.

Read Full Story | 1 Comment | Leave a Comment

Another use for mTOR inhibitors: Preserving vanishing bones in Gorham-Stout syndrome

Gorham Stout rapamycin sirolimus
In Gorham-Stout, lymphatic vessels gone amok eat away at bone. Sirolimus appears to reverse this process.

The mTOR pathway is fundamental to nearly every cell in the body. It drives processes related to cell growth, protein production and metabolism, influencing everything from neurocognition to tumor growth. Because of this broad role, indications for drugs targeting the mTOR pathway are also remarkably broad.

Alexander Malloy, 14, is one of the first patients to benefit from a new use: curbing rapid bone loss in patients with a rare “vanishing bone disease,” or Gorham-Stout syndrome. It was discovered when Alex, who had mild scoliosis, started getting worse. To his parents’ shock, an MRI scan showed he was missing bones in his spine.

Gorham-Stout is actually the result of a rare vascular anomaly.

Read Full Story | Leave a Comment

Where science connects with care: A Q&A with Leonard Zon

Leonard Zon in the lab

Leonard Zon, MD, is founder and director of the Stem Cell Research Program at Boston Children’s Hospital and an investigator with the Howard Hughes Medical Institute and the Harvard Stem Cell Institute. His laboratory research focuses on stem cell therapies for patients with cancer and blood disorders, using a high-throughput, automated system for screening potential drugs in zebrafish. Zon was cofounder of Scholar Rock and Fate Therapeutics and founder and past president of the International Society for Stem Cell Research.

Your hospital just received a #1 ranking from U.S. News & World Report. What does this mean relative to your role there?

I’ve been at Boston Children’s Hospital for 25 years, and it’s really satisfying to be at the premier institution for clinical care. And we’re very lucky to have one of the premier stem cell programs in the world. I have a strong sense that my impact on society is as a physician-scientist, bringing basic discoveries to the clinic. We’re able to have a huge impact on finding new diagnoses and new therapies for our children.

What inspires you to do your job every day?

As a hematologist I take care of patients who have devastating diseases – a variety of blood diseases and cancer. When I see these children, I’m always wondering, could there be ways to treating them that haven’t been thought of before? Successfully treating a child gives them an entire lifetime of health.

Read Full Story | Leave a Comment

Hunting rare cancers to ground

rare cancers
(UGREEN 3S / Shutterstock)

As we’ve seen this week on Vector, some rare childhood cancers such as medulloblastoma and neuroblastoma are starting to give up their molecular secrets, raising the possibility (and in medulloblastoma’s case, the reality) of precision treatments. Many cancers, though, are so rare that there aren’t even cell lines in which to study them. Yet they could hold important insights. The first tumor suppressor gene, Rb, was discovered in retinoblastoma, a cancer affecting a mere 500 U.S. children each year.

Doctors often have no clear consensus for diagnosing and treating rare cancers, and outcomes tend to be poor in both children and adults. Andrew Hong, MD, a postdoctoral fellow in the Broad Institute’s Cancer Program and a pediatric oncologist at the Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, is part of a research team that wants to fix that.

Armed with recent advances in culture technology, the scientists aim to engineer cell lines for as many rare cancers as they can get samples for — and then interrogate them for therapeutic targets. A proof-of-concept published in Nature Communications last month finds a lot of potential in their approach. Read more on Broad Minded, the Broad Institute’s science blog.

Read Full Story | Leave a Comment

New cancer target, let-7, unifies theories on neuroblastoma’s origins

let7-arrows-target-shutterstock_368341574

Striking the nerve tissue, neuroblastoma is the most common cancer in infants and toddlers. Great strides have been made in its treatment, but advanced cases still are often fatal, and children who survive often face life-long physical and intellectual challenges related to their treatment.

A study published online by Nature last week, led by researchers at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, finds that a microRNA called let-7 is central in curbing neuroblastoma. The study unifies several theories about neuroblastoma and could bring focus to efforts to find a targeted, nontoxic alternative to chemotherapy.

The findings also have implications for other solid tumors in which let-7 is lost, such as Wilms tumor, lung, breast, ovarian and cervical cancers, says first author John Powers, PhD, of the Division of Pediatric Hematology/Oncology at Boston Children’s Hospital.

Read Full Story | Leave a Comment

When antibiotics fail: A potential new angle on severe bacterial infection and sepsis

bacterial infection sepsisBacterial infections that don’t respond to antibiotics are of rising concern. And so is sepsis — the immune system’s last-ditch, failed attack on infection that ends up being lethal itself. Sepsis is the largest killer of newborns and children worldwide and, in the U.S. alone, kills a quarter of a million people each year. Like antibiotic-resistant infections, it has no good treatment.

Reporting this week in Nature, scientists in Boston Children’s Hospital’s Program in Cellular and Molecular Medicine (PCMM) describe new potential avenues for controlling both sepsis and the runaway bacterial infections that provoke it.

Read Full Story | Leave a Comment

Mom-entrepreneur forms gene therapy company to tackle Sanfilippo syndrome

Karen and Ornella Aiach Sanfilippo gene therapy

Sanfilippo syndrome A is a neurodegenerative condition caused by a genetic error in metabolism: because of a missing enzyme, long-chained sugar molecules cannot be broken down. Toxic substrates accumulate in cells, causing a rapid cognitive decline and, later, motor decline. Most affected children die in their teens or earlier.

There is no treatment, and when Karen Aiach’s daughter Ornella was diagnosed with Sanfilippo syndrome A, no companies were even working on the disease.

As a mother, Aiach could not accept that.

Read Full Story | Leave a Comment

3D-printed models assist complex brain surgery for encephalocele

Encephalocele 3D printing

At five months’ gestation, Bentley Yoder was given little chance to live. A routine 20-week “gender reveal” ultrasound showed that a large portion of his brain was growing outside of his skull, a malformation known as an encephalocele. But he was moving and kicking and had a strong heartbeat, so his parents, Sierra and Dustin, carried on with the pregnancy.

Born through a normal vaginal delivery (the doctors felt that a C-section would interfere with Sierra’s grieving process), Bentley surprised everyone by thriving and meeting most of his baby milestones.

But the large protuberance on his head was holding him back. It steadily got larger, filling with cerebrospinal fluid. Bentley couldn’t hold his head up for more than a few seconds.

Read Full Story | Leave a Comment

News Notes: Pediatric science roundup

A quick look at recent research Vector finds noteworthy.

Tracking infants’ microbiomes

cute microbes-shutterstock_317080235-croppedMicrobiome studies are blooming as rapidly as bacteria in an immunocompromised host. But few studies have been done in children, whose microbiomes are actively forming and vulnerable to outside influences. Two studies in Science Translational Medicine on June 15 tracked infants’ gut microbiomes prospectively over time. The first, led by researchers at the Broad Institute and Massachusetts General Hospital, analyzed DNA from monthly stool samples from 39 Finnish infants, starting at 2 months of age. Over the next three years, 20 of the children received at least one course of antibiotics. Those who were repeatedly dosed had fewer “good” bacteria, including microbes important in training the immune system. Overall, their microbiomes were less diverse and less stable, and their gut microbes had more antibiotic resistance genes, some of which lingered even after antibiotic treatment. Delivery mode (cesarean vs. vaginal) also affected microbial diversity. A second study at NYU Langone Medical Center tracked 43 U.S. infants for two years and similarly found disturbances in microbiome development associated with antibiotic treatment, delivery by cesarean section and formula feeding versus breastfeeding.

Read Full Story | Leave a Comment

Faja lab focuses on biomarkers and executive functioning in autism

What makes children with autism tick, and how can we help them function better socially? That’s the focus of research in the lab Susan Faja, PhD, at Boston Children’s Hospital.

The GAMES project seeks to build social skills in children with autism spectrum disorder (ASD) by building cognitive skills, specifically executive functioning. Through computer games and coaching, Faja hopes strengthen kids’ ability to plan, inhibit behavior, manage complex or conflicting information and shift flexibly between different rules or situations. She believes executive function training will help children with ASD better understand other people’s perspectives and act more appropriately in social situations.

Faja is also interested in biomarkers that indicate whether interventions are working, including brain EEG recordings and eye tracking. She’s using these tools to learn what visual information kids with ASD are attending to and how their brains respond to social information.

“I think the thing that really makes my lab unique is that we are looking at both neuroscience and intervention at the same time,” says Faja. “We take information from the neuroscience literature about how the brain develops, and we look for ways to apply that to developing new treatments.”

Learn more about Faja’s ongoing studies and how children can enroll.

Read Full Story | Leave a Comment