Stories about: Regenerative medicine

So far, so good for gene therapy patient Emir Seyrek

Emir Seyrek gene therapy Wiskott-Aldrich ThrivingRemember Emir Seyrek, the Turkish boy who last year was the first patient in gene therapy trial for a genetic immunodeficiency called Wiskott-Aldrich Syndrome? Emir traveled back to the U.S. earlier this month for an annual follow-up visit with his care team at Dana-Farber/Boston Children’s Cancer and Blood Disorders Center. The news was quite good.

“Emir is the star of the trial,” Sung-Yun Pai, MD—a Dana-Farber/Boston Children’s gene therapy and immunodeficiency transplant specialist and lead (along with David Williams, MD, and Luigi Notarangelo, MD) of the U.S. arm of the trial—tells our sister blog, Thriving. “He has the highest platelet count of all of the children who have gone through gene therapy with this vector so far. His immune function is excellent, and we have no worries whatsoever from a bleeding standpoint. He’s perfectly safe to play like a normal child.”

Learn more about Emir’s progress on Thriving.

 

Read Full Story | Leave a Comment

Supercharged marrow transplant: Zebrafish reveal drugs that aid engraftment

Zebrafish stem cell engraftment bone marrow
(Jonathan Henninger and Vera Binder)

Bone marrow transplantation, a.k.a. stem cell transplantation, can offer a cure for certain cancers, blood disorders, immune deficiencies and even metabolic disorders. But it’s a highly toxic procedure, especially when a closely matched marrow donor can’t be found. Using stem cells from umbilical cord blood banked after childbirth could open up many more matching possibilities, making transplantation safer.

Except for one problem. “Ninety percent of cord blood units can’t be used because they’re too small,” says Leonard Zon, MD, who directs the Stem Cell Research Program at Boston Children’s.

But what if the blood stem cells in those units could be supercharged to engraft more efficiently in the bone marrow and grow their numbers faster? That’s been the quest of the Zon lab for the past seven years, in partnership with a see-through zebrafish called Casper.

Read Full Story | Leave a Comment

Gene therapy to germline editing: Promises, challenges, ethics

A report this April rocked the scientific world: scientists in China reported editing the genomes of human embryos using CRISPR/Cas9 technology. It was a limited success: of 86 embryos injected with CRISPR/Cas9, only 71 survived and only 4 had their target gene successfully edited. The edits didn’t take in every cell, creating a mosaic pattern, and worse, unwanted DNA mutations were introduced.

“Their study should give pause to any practitioner who thinks the technology is ready for testing to eradicate disease genes during [in vitro fertilization],” George Q. Daley, MD, PhD, director of the Stem Cell Transplantation Program at Boston Children’s Hospital, told The New York Times. “This is an unsafe procedure and should not be practiced at this time, and perhaps never.”

As Daley detailed last week in his excellent presentation at Harvard Medical School’s Talks@12 series, the report reignited an ethical debate around tampering with life that’s hummed around genetic and stem cell research for decades. What the Chinese report adds is the theoretical capability of not just changing your genetic makeup, but changing the DNA you pass on to your children.

Read Full Story | Leave a Comment

Transplant surgeon seeks to avoid transplants

First in a two-part series on metabolic liver disease. Read part 2.

Khashayar Vakili, MDIn the clinical world, Boston Children’s Hospital surgeon Khashayar Vakili, MD, specializes in liver, kidney and intestinal transplant surgeries, while in the lab he is doing work which, for some patients, could eliminate the need for a transplant surgeon altogether.

Vakili has been working at Boston Children’s for six years. During his transplant surgery fellowship, he spent several months learning about pediatric liver transplantation from Heung Bae Kim, MD, director of the Boston Children’s Pediatric Transplant Center, which prompted his interest in the field.

“When the opportunity to join the transplant team presented itself, I did not hesitate to accept,” he says.

Read Full Story | Leave a Comment

Souped-up fish facility boosts drug discovery and testing

closeup of zebrafish-20150526_ZebraFishCeremony-60The care and feeding of more than 250,000 zebrafish just got better, thanks to a $4 million grant from the Massachusetts Life Sciences Center to upgrade Boston Children’s Hospital’s Karp Aquatics Facility. Aside from the fish, patients with cancer, blood diseases and more stand to benefit.

From a new crop of Boston-Children’s-patented spawning tanks to a robotic feeding system, the upgrade will help raise the large numbers of the striped tropical fish needed to rapidly identify and screen potential new therapeutics. It’s all part of the Children’s Center for Cell Therapy, established in 2013. We put on shoe covers and took a look behind the scenes. (Photos: Katherine Cohen)

Read Full Story | Leave a Comment

Fast-regenerating mice offer clues for stroke, spinal cord and optic nerve injury

axon regeneration CNS
The CAST mouse from Thailand–genetically distinct from most lab mice–may have the right ingredients for nerve regeneration. (Courtesy Jackson Laboratory)

Second in a two-part series on nerve regeneration. Read part 1.

The search for therapies to spur regeneration after spinal cord injury, stroke and other central nervous system injuries hasn’t been all that successful to date. Getting nerve fibers (axons) to regenerate in mammals, typically lab mice, has often involved manipulating oncogenes or tumor suppressor genes to encourage growth, a move that could greatly increase a person’s risk of cancer.

A study published online last week by Neuron, led by the F.M. Kirby Neurobiology Center at Boston Children’s Hospital, took a completely different tactic.

Seeing little success at first, the researchers wondered whether they were working with the wrong mice.

Read Full Story | Leave a Comment

Proteomics provides new leads into nerve regeneration

Nerve regeneration. From Santiago Ramón y Cajal’s “Estudios sobre la degeneración y regeneración del sistema nervioso” (1913-14). Via Scholarpedia.

nerve regeneration proteomicsFirst in a two-part series on nerve regeneration. Read part 2

Researchers have tried for a century to get injured nerves in the brain and spinal cord to regenerate. Various combinations of growth-promoting and growth-inhibiting molecules have been found helpful, but results have often been hard to replicate. There have been some notable glimmers of hope in recent years, but the goal of regenerating a nerve fiber enough to wire up properly in the brain and actually function again has been largely elusive.

“The majority of axons still cannot regenerate,” says Zhigang He, PhD, a member of the F.M. Kirby Neurobiology Center at Boston Children’s Hospital. “This suggests we need to find additional molecules, additional mechanisms.”

Microarray analyses—which show what genes are transcribed (turned on) in injured nerves—have helped to some extent, but the plentiful leads they turn up are hard to analyze and often don’t pan out. The problem, says Judith Steen, PhD, who runs a proteomics lab at the Kirby Center, is that even when the genes are transcribed, the cell may not actually build the proteins they encode.

That’s where proteomics comes in. “By measuring proteins, you get a more direct, downstream readout of the system,” Steen says.

Read Full Story | Leave a Comment

The silk scaffold: A promising road to hollow organ reconstruction

Silk photo_black backgroundSilk production and global interest in the lustrous fiber date back to prehistoric times. Today, the natural protein is solidifying itself as a biomaterials alternative in the world of regenerative medicine.

A recent study conducted by Boston Children’s Hospital urologist Carlos Estrada, MD and bioengineer Joshua Mauney, PhD, shows two-layer, biodegradable silk scaffolds to be a promising cell-free, “off-the-shelf” alternative to traditional implants for the reconstruction of hollow gastrointestinal structures such as the esophagus.

Read Full Story | Leave a Comment

Pediatric innovators showcase highlights inventions

Innovators Showcase Boston Children's HospitalSome great inventions were on view this week at the second annual Boston Children’s Hospital Innovators Showcase. Hosted by the hospital’s Innovation Acceleration Program and Technology & Innovation Development Office, the event featured everything from virtual reality goggles with gesture control to biomedical technologies. Below are a few new projects that caught Vector’s eye (expect to hear more about them in the coming months), a kid-friendly interview about the SimLab and list of inventions kids themselves would like to see. (Photos by Katherine Cohen except as noted)

Read Full Story | Leave a Comment

First six months of life are best for stimulating child heart growth

heart-regeneration-study2
In these sample sections of mouse heart, the color blue signifies scar tissue. Damage from scarring was minimized by early administration of the drug neuregulin.

Developing a child-centric approach to treating heart failure is no easy task. For one thing, the underlying causes of decreased cardiac function in children vastly differ from those in adults. While most adults with heart failure have suffered a heart attack, heart failure in children is more likely the result of congenital heart disease (CHD), or a structural defect present at birth that impairs heart function. And most therapies designed for adults haven’t proven equally effective in children.

Stimulating heart muscle cells to regenerate is one way cardiac researchers at Boston Children’s Hospital’s Translational Research Center hope to restore function to children’s ailing hearts. In this area, children actually have an advantage over adults: their young heart cells are better suited for regrowth.

Reporting in the April 1 Science Translational Medicine, Brian Polizzotti, PhD, and Bernhard Kuhn, MD, demonstrate that not only does the drug neuregulin trigger heart cell regeneration and improve overall heart function in newborn mice, but its effects are most potent for humans within the first six months of life.

Read Full Story | Leave a Comment